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Abstract-The effect ofshear deformation on dynamic instability ofsimply supported antisymmetric
angle-ply rectangular plates is considered. The boundaries of the principal instability region are
conveniently represented in the plane "non-dimensional excitation frequency squared-non-dimen
sionalload amplitude". The effects of the magnitude of the shear correction coefficients, number
oflayers, plate aspect ratio, and thickness-to-edge length ratio are illustrated in numerical examples.

I. INTRODUCTION

The intensive use of fiber-reinforced composites has resulted in very detailed studies of the
static and dynamic behavior of laminated anisotropic plates. The lower transverse shear
moduli of such plates makes them much more sensitive to the effect of shear deformation
than isotropic plates of the same geometry. Different theories incorporating shear defor
mation effects were reviewed by Bert[1, 2].

In particular, the theory proposed by Yang et al.[3] has been intensively used for
solution of both static and dynamic problems. Whitney and Pagano used this theory
to study cylindrical bending under transverse load and flexural vibration frequencies of
symmetric and unsymmetric laminates[4]. The problems of buckling and free vibrations of
shear deformable unsymmetric laminates was discussed by Noor[5] and by Bert and Chen[6].

Notably, Srinivas and Rao[7] as well as Sun and Whitney[8] showed that the theory
of Yang-Norris-Stavsky gives satisfactory results for predicting the first flexural modes of
vibrations if the transverse shear rigidities of the constituent layers are similar. The effect
of unsymmctric lamination on dynamic stability of rectangular plates was considered by
Birman[9] who neglected transverse shear deformation and rotary inertia.

In this paper the effect of shear deformation on dynamic stability of antisymmetric
angle-ply laminated rectangular plates is studied. The plate is hinged on all edges and the
tangential stresses and in-plane displacements in the direction perpendicular to each edge
are zero.

2. ANALYSIS

Consider a rectangular antisymmetric angle-ply laminated plate consisting of an even
number of identical orthotropic layers oriented alternately at angles ±e. The plate is subject
to uniformly distributed, parametric, time-dependent loads of intensity N1(t) and N 2(t) as
shown in Fig. I. The equations of motion of such a plate are[6]

t Presented at the 10th U.S. National Congress of Applied Mechanics, University of Texas, Austin,
TX 78712, June 1986.
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N1.,+N"., = Cphu. 1f

N6•x +N2•, = Cphv.1f

Qx.\ + Q,r.r - N I (t)w. u - N 2(t)w.,r,r = phw.1f

ph 3

M, ..,+Mo.y-Qx = ~12 t/J,.1f

ph 3

M 6•x +M 2.,r-Q,r = 12t/J,r.({

( I )

where u, v, ware displacements along the X-, yo, z-axes, respectively, t/J x and t/Jyare the
bending slopes in the x-z and y-z planes, t is time, (.. ').i == 0(...)/oi, P is material density,
and C is a coefficient of in-plane inertia. The in-plane stress resultants and stress couples
are related to the generalized displacements by the following constitutive relations

N1 All A I2 0 0 0 B I6 u,X

N2 A I2 A 22 0 0 0 B 26 v,)'

N6 0 0 A 66 B I6 B 26 0 v.x+u,y
= (2)

M I 0 0 B I6 D II D I2 0 t/Jx.x

M2 0 0 B 26 D I2 D22 0 t/J)',y

M6 B I6 B26 0 0 0 D66 t/Jy.x+ t/Jx,y

The shear stress resultants are functions of the shear correction coefficients k~, k~

The extensional, coupling, and bending stitfnesses are defined as

where h is the plate thickness and Qij are the plane-stress reduced elastic stitfnesses,
Each of the plies is orthotropic; therefore

n

Aij= LQlJJ(hk-hk_ l )

ke I

Bij = ~ t QjJ>(hl-hL I)
k-I

where k denotes a typical ply and n is the total number of plies.

/7/ZZZ/N2

N, 0£;;---77-/-7~7----r-,~}l
/ N2

Y
Fig, 1. Rectangular plate subjected to dynamic in-plane loads.
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The substitution of eqns (2) and (3) into eqns (I) yields the set of differential equations
which can be conveniently represented as[6]

u

v

where Lij = Lj ; and

L 11 = A 11 d;+A 66d}-Cphd,2

L I2 = (AI2+A66)dxdy

L 13 = 0

L I4 = (B 16/h)d; + (B26/h)d}

LIs = (2B I6/h)dxdy

L n = A 66d;+A n d}-Cphd,2

L 23 = 0

= {O} (6)

(7)

L 33 = -k;Assd;-k~A44d}+NI(t)d;+N2(t)d}+phd;

L 34 = - (k~A44/h)dy

L 3S = - (k;Ass/h)dx

L 44 = (D66/h2)d;+(Dnlh2)d;-(k~A44/h2)_(ph/l2)d;

L 4S = (D 12 +D66)h-2dxdy

L ss = (D II/h 2)d; +(D 66/h 2)d}: - (k;A ss /h 2)- (Ph/12)d;

d; == 0( . . .)/oi, i=x,y,t.

The boundary conditions considered in this paper coincide with those used by Whitney
and Leissa[lO] and Bert and Chen[6]

u(O,y) = u(a,y) = 0

N 6 (0,y) = N 6 (a,y) = 0

w(O,y) = w(a,y) = 0

M1(0,y) = M,(a,y) = 0

ljJy(O,y) = ljJy(a,y) = 0

N 6 (x,0) = N 6 (x, b) = 0

v(x,O) = vex, b) = 0

w(x,O) = w(x,b) = 0

M 2(x,0) = M 2(x,b) = 0

ljJ..cx,O) = ljJ..cx,b) = o.

(8)

It is noted that if the shear strains are negligible, these conditions converge to the S3
boundary conditions as defined by Almroth[ll] or the SS2 conditions ofHoff[12]. Boundary
conditions (8) and governing equations (6) are satisfied if the mode shape of the motion
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with m and n half-waves along the x- and y-axes, respectively, is represented by

u = U(t) sin IXX cos f3y

v = V(t) cos IXX sin f3y

w = W(t) sin cxx sin f3y

hl/!y = Y(t) sin IXX cos f3y

hl/!, = X(t) cos IXX sin f3y

where

(9)

cx == mn/a, 13 == nn/b. (10)

The effects of in-plane and rotary inertias on vibrations of antisymmetric angle-ply
plates at frequencies near the fundamental frequency are negligible[6]. Since dynamic
stability is most important in cases in which the excitation frequencies are of the same order
as the fundamental frequency, these inertias are neglected here. Then substitution of eqns
(9) into eqns (6) results in the following set of equations:

(11)

(12)

(13)

(14)

(15)

where E r is the Young's modulus in the direction normal to the fibers.
The coefficients Cij are conveniently represented in the non-dimensional form

- 2 - 2
C I I = - AI I cx I - A6613 I

C 12 = - (..4 12 +..4 66 ) CX lf31

C I4 = -BI6CX~ -B26f3~

CI5 = -2B 16 CX 1f3l

Here

- 2 - 2C22 = -A 66 CX I-A 22 f3l

C24 = -2B26 CX 1f3l

C 33 = k;A55CX~+k~A44f3f-NI(t)lXf-.N2(t)f3f

C34 = -k~..444f3l

C35 = -k;..455 1X\

C44 = -D66CX~-D22f3f-k~..444

C45 = -(D I2 +D66 )/XIf3\

C 55 = -DIICX~-D66f3~-k;..455'

(16)
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(XI == mnhla, PI == mr.)'hla, ). == alb (17)

N;(t) = N;(t)1Erh ; i = 1,2. (18)

The non-dimensional extensional, coupling, and bending stiffnesses, calculated under
the assumption that the thickness of each 11 plies is hill, can be represented as

n

ii,; = L Q!Jl/Il
k=1

n

- " IWlBij = (1/2) L.. '>!.ij /;(k)
k='

- ?iCk)Dij = (l/3)}:'>!.i) f2(k)

where f,(k) and f2(k) are given by

f,(k) = (hl-M_J)lh 2

f2(k) = (h1-hL ,)lh3•

(19)

(20)

The non-dimensional reduced stiffnesses of the kth ply which is inclined at an angle f)

to the x-axis are

where

on = Qrlc4+2(QT2+2Qt6)c2s2+Q~2S4

Q\kl = (QTI +Q~2-4Qt6)S2C2+QT2(S4+C4)

Q~k~ = QTIS4+2(QT2 +2Qt6)S2C2+Q~2C4

on = (QTI-QT2-2Qt6)SC3+(QT2-Q~2+2Qt6)S3C

o~J = (QTI-Qr2-2Qt6)s3c+(QT2-Q~2+2Qt6)Sc3

?ilk) _ Q* c2+Q* S2'>!-44- 44 55

Q(k) _ Q* S2+Q* c2
5S - 44 55

(21 )

and

C = cos 0; s = sin 0 (7.:)

Q* _ VLT
12 =

I-vLrvn

Qt4 == GrzlEr

Q!s == GaiEr

Qt6 == GLTIEr·

(23)
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The set of cqns (II )-( 15) can be reduced to a single equation in W. Indeed, U and V
can be expressed in terms of X, Y using eqns (II) and (12)

U= 5 1X+52Y

V=53X+54Y

where

51 = (CI4CI2-CI5C22)/5

52 = (CI2C24-C22CI4)/5

53 = (CI5C22-CIICI4)/5

54 = (CI4C22-CIIC24)/5

5= C 1I C22 -Cr2'

After substitution of eqns (24) into eqns (14) and (15), one can express X and Yas

(24)

(25)

(26)

Here

where

55 = CI45 1 +C2453+C45

56 = CI452+C2454+C44

57 = C I55 1 +CI453+CS5

58 = CI552+CI454+C45'

(27)

(28)

Now eqns (26) can be substituted into eqn (13) resulting in the linear second-order
differential equation for Wet). Representing the non-dimensional pulsating loads by

fill (I) = filr cos 2,

fil2 (1) = fiI! cos 2,

where the non-dimensional time parameter is

,= wI

one obtains Mathieu's equation

w,tt + (ao -2q cos 2r)W = 0

where

(29)

(30)

(31)

(32)
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The non-dimensional frequency squared is

1059

(33)

The boundaries of the instability regions of the solutions of Mathieu's equation are
tabulated. It is convenient to use the series representation of these boundaries[13]. For
example, the boundaries of the first (principal) instability region are given by

(34)

if q is small enough so that the series converges. The higher instability regions are not
always realized if the plate vibrates with limited amplitudes due to damping.

It is convenient to show the boundaries of the instability regions on the frequency
load plane where the horizontal axis corresponds to the squared non-dimensional frequency
of dynamic load w2 and the vertical axis represents the non-dimensional amplitude of the
load NT. Note that N! can always be represented as a certain fraction of NT, so that such
representation is possible even if the dynamic loads are applied along both axes.

If the amplitude values NT, N! are small so that non-linear terms in eqn (34) can be
neglected, the boundaries of the principal instability region are represented by the following
relations:

3. RESULTS AND DISCUSSION

Two plates were considered: a two-layer plate (8 = -45°/45°) and a four-layer plate
(8 = 45°/-45°/45°/-45°). The material properties were taken as in Refs [3,6], i.e.

b

0.05

o

Fig. 2. Effect of relative thickness on the principal instability region for a two-layer (-45°, 45°)
square plate; IV! = 0, m = n = 1, k; = k~ = 516; cases a-e are for hla = 0.10, 0.05, 0.03,

respectively.

c
0.05

o

Fig. 3. Effect of relative thickness on the principal instability region for a four-layer (45°, _45°,
45°, _45°) square plate; IV! = 0, m = n = I, k; = k~ = 516; cases a-e as in Fig. 2.
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ELlEr == 40, GLrlEr == GLZIEr == 0.6, GrzlEr == 0.5, VLT == 0.25, q == q == 5/6.

The effect of the relative thickness ilia on the principal instability regions of two- and four
layer square plates is shown in Figs 2 and 3. It appears that the instability regions of thicker
plates are narrow. These regions are also shifted to the smaller non-dimensional excitation
frequencies. However, if we calculate the dimensional frequencies using eqn (33), the
instability regions of thicker plates correspond to larger frequencies. This reflects the fact
that the thicker plates are stiffer. The increase of the aspect ratio is shown to shift the
instability regions to the larger excitation frequencies as shown in Figs 4 and 5.

The effect of the magnitude of the shear correction coefficients which were otherwise
supposed to be equal to 5/6 is shown in Figs 6 and 7. The larger shear correction coefficients
result in the shift of the principal instability region to the smaller frequencies. Finally, the
effect of the number of layers on the instability region of a square plate is shown in Fig. 8.
The increase of the number of layers shifts the instability region to larger frequencies; in
this particular case, the width of the principal instability region was not essentially influenced
by the number of layers.

o.O!:H-

o

a b

I

c

I
1000

d

Fig. 4. Effect of aspect ratio on the principal instability region for a two-layer (-45°,45") plate;
IV! == 0, h/a == 0.1, m == n == I, k~ == k; == 5/6; cases a-d are for), == 0.5,1.0,1.5,2.0, respectively.

005~

o

a b

I
500

c

I
1000

d

Fig. 5. Effect of aspect ratio on the principal instability region for a four-layer (45", -45, 45,
-45°) plate; IV! == 0, h/a == 0.1, m == n == I, k~ == q == 5/6; cases a-d as in Fig. 4.

0.05~

o

a b

I
500

c d •

I
1000

Fig. 6. Effect of the shear correction coefficients on the principal instability region for a two-layer
( - 45°, 45°) square plate; IV! == 0, h/a == 0.1, m == n == I; cases a-e correspond to values of

k~ == k; of 1.0, 0.833, 0.50, 0.25. and 0, respectively.
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0.05c-

o

a b

I
500

-2
W

c d e

\

I
1000

Fig. 7. Effect of the shear correction coefficients on the principal instability region for a four-layer
(45°, -45°.45", _45°) square plate; N! = 0, /zla = 0.1, m = n = I; cases a-e as in Fig. 6.

0.05

200

a b

Fig. 8. Effeet of number of layers on the principal instability region of a square plate; N! = 0,
hla = 0.1, m = n = I, k~ = k; = 5/6; cases a and b correspond to two and fouriayers, respectively.

In conclusion, the effect ofshear deformation on dynamic stability ofantisymmetricalIy
laminated angle-ply plates is significant. This is consistent with results obtained in previous
work considering vibration, buckling, and static deflection of such plates.
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